Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization

نویسندگان

  • James T. Allison
  • Tinghao Guo
  • Zhi Han
چکیده

Design of physical systems and associated control systems are coupled tasks; design methods that manage this interaction explicitly can produce system-optimal designs, whereas conventional sequential processes may not. Here, we explore a new technique for combined physical and control system design (co-design) based on a simultaneous dynamic optimization approach known as direct transcription, which transforms infinitedimensional control design problems into finite-dimensional nonlinear programming problems. While direct transcription problem dimension is often large, sparse problem structures and fine-grained parallelism (among other advantageous properties) can be exploited to yield computationally efficient implementations. Extension of direct transcription to co-design gives rise to new problem structures and new challenges. Here, we illustrate direct transcription for co-design using a new automotive active suspension design example developed specifically for testing co-design methods. This example builds on prior active suspension problems by incorporating a more realistic physical design component that includes independent design variables and a broad set of physical design constraints, while maintaining linearity of the associated differential equations. A simultaneous co-design approach was implemented using direct transcription, and numerical results were compared with conventional sequential optimization. The simultaneous optimization approach achieves better performance than sequential design across a range of design studies. The dynamics of the active system were analyzed with varied level of control authority to investigate how dynamic systems should be designed differently when active control is introduced. [DOI: 10.1115/1.4027335]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations

In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...

متن کامل

Design of a Constrained Nonlinear Controller using Firefly Algorithm for Active Suspension System

Active vehicle suspension system is designed to increase the ride comfort and road holding of vehicles. Due to limitations in the external force produced by actuator, the design problem encounters the constraint on the control input. In this paper, a novel nonlinear controller with the input constraint is designed for the active suspension system. In the proposed method, at first, a constrained...

متن کامل

Pareto Optimization of a Two-degree of Freedom Passive Linear Suspension Using a New Multi-objective Genetic Algorithm (TECHNICAL NOTE)

The primary function of a suspension system of a vehicle is to isolate the road excitations experienced by the tires from being transmitted to the passengers. In this paper, we formulate an optimal vehicle suspension design problem with the quarter-car vehicle dynamic model. A new multi-objective genetic algorithm is used for Pareto optimization of a two-degree of freedom vehicle vibration mode...

متن کامل

Optimal Selection of Active Suspension Parameters Using Artificial Intelligence

In this paper, multi-objective uniform-diversity genetic algorithm (MUGA) with a diversity preserving mechanism called the ε-elimination algorithm is used for Pareto optimization of 5-degree of freedom vehicle vibration model considering the five conflicting functions simultaneously. The important conflicting objective functions that have been considered in this work are, namely, vertical accel...

متن کامل

Design and Construction of an Electromagetic Supension System for Vehicles

This paper introduces a novel passive suspension system for ground vehicles. This system is based on a flexible Electromagnetic Shock Absorber (EMSA). In the proposed system, efforts are made to a) select a high damping coefficient usable in a car b) determine Physical dimensions and geometry not much different from those of the mechanical shock absorbers and c) seletct EMSA weight and volume l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011